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relatively accurate values are available in few cases. 
Gliineisen2'1 and Birch8 provide tables of T/ for elements 
and some compounds. 

As noted, the parameter ~ of the multiplicative 
correction (5) to the Birch equation as e).:pressed in 
the iorm (4), has a value quite close to zero for very 
many (if not most) elements and compounds. When 
~ does not vanish but is independent of temperature, 
it is clear from the derivation that the generalized 
relation (15) is valid within the approximations made, 
when multiplied by the correction factor (5). However! 
the experimental results of Swenson9 for the alkali 
metals at low temperature show that ~ depends on 
temperature when it does not vanish for these elements. 
But whether ~ depends on temperature or not, one 
notes that the generalized relation (15), when multiplied 
by the correction factor (5), reduces at any fixed 
temperature precisely to the general form of the iso­
thermal Birch equation, because of the physical 
significance of the parameters '0 and X. Thus, no reason 
seems to exist why the generalized Birch equation 
should not be reliable for arbitrary temperature when 
the factor (5) is included and ~ depends on temperature. 
This statement should be true within the approxima­
tions entailed in Birch's derivation of the isothermal 
form, and implies that the difficulty raised by Eq. (31) 
in representing correctly the temperature dependence of 
K is a shortcoming of Birch's equation in the form (4), 
and not of the analysis employed here. 

IV. THERMAL PROPERTIES OF THE SOLID 

In this section, the salient thermal properties of the 
solid will be examined, as implied by the generalized 
equation of state. Inasmuch as ~=O for the majority 
of solids, the discussion will be restricted to this case 
for simplicity. 

In the Mie-Griineisen theory of the thermal pressure 
of a lattice, the total pressure P is expressed in terms of 
a volume-dependent pressure p and a thermal compo­
nent PT of pressure, by16.16 

(41) 

If the volume variation of all lattice frequencies I'i is 
the same, so that the Gruneisen parameter 'Y can be 
defined by 

the basic result of the theory is 

PT='YET/V, 

(42) 

(43) 

where ET is the thermal energy of the lattice.16 •16 One 
obtains 

(
ap) =(aPT) ='Ycy+(a'Y) ET (44) 
aT y aT v V aT y v 

directly, where C y is the heat capacity of the solid at 
constant volume. The generalization (15) has been 

required to meet Eq. (17) through terms of first 
order in P/K. To this order, therefore, for a solid to 
which the Mie-Gruneisen theory is applicable, the 
generalized equation of state satisfies 

Ka='YCv/V + (a'Y/aT)vEr/V, (45) 

which represents Grtineisen's law. 
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The usual statement of Gruneisen's law differs from 
Eq. (45) by omission of the term involving (a'Y/aT)v, 
in conformity with Gruneisen's postulate that the 
lattice frequencies are a function only of the volume.16 •24 

When this hypothesis is not satisfied, the general form 
(45) follows from the fundamental result (43). By use 
of the Lorentz-Slater formula (12), one obtains \ for P sm 

1 n2('U/V)n- m2('U/V)'" 1 
'Y=-

2 n('U/V)n - m('U/V)m 6 
(46) 

as the Gruneisen parameter corresponding to the 
generalization (15) of the isothermal equation of state. 
In general, this e>"'Pression for 'Y depends on the tempera­
ture through the parameter '0 (although it does not 
involve X). However, it has been noted that V = '0 for 
zero pressure. Hence, Eq. (46) yields the result that 
'Y at any temperature has the strictly constant value I 

given by Eq. (14), if the pressure is zero. In this case, 
the last term in the form (45) of Gruneisen's law 
vanishes. Therefore, Gruneisen's postulate is satisfied 
for zero pressure. 

To discuss the temperature dependence of 'Y for 
nonvanishing pressure, it is convenient to make use 
of the volume'll possessed by the solid at zero tempera­
ture, rather than the actual volume V. These two 
quantities are related to each other at the same pressure 
by 

T 

V=v ex'P J adT. 
o 

(47) 

\ 
I 

The bulk modulus K will be written in a form corre­
sponding to Eq. (41), as 

K=k+K2·, (48) 

where k (like p in this case) depends only on v, and 
KT (like P 7·) is a temperature-dependent component. 
If the exponentials in Eqs. (27) and (32) are eX'Panded 
to first order, and Birch's approximation (25) is used, 
'Y of Eq. (46) can be written to first order as 

[ 
d'Yo fT JP 

'Y='Yo- -- T/rftodT-, 
d Inv 0 k 

(49) 

where 

(50) 
1 n2('Vo/v)n - m2(vo/v)m 

'Yo=-
2 n(vo/v)n-m(vo/v)m 6 

and 

(51) 
d'Yo 1 nm(n- m)2(vo/v)TI+m 
--=---------
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